If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-78x=54
We move all terms to the left:
8x^2-78x-(54)=0
a = 8; b = -78; c = -54;
Δ = b2-4ac
Δ = -782-4·8·(-54)
Δ = 7812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7812}=\sqrt{36*217}=\sqrt{36}*\sqrt{217}=6\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-6\sqrt{217}}{2*8}=\frac{78-6\sqrt{217}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+6\sqrt{217}}{2*8}=\frac{78+6\sqrt{217}}{16} $
| 6s+40=196 | | X3+-4x2+5x+-20=0 | | 2x+15=-67-10x | | 8-4b+9+6b=33 | | 5-6x=-20 | | 5x+9=51-5x | | 9+3=12+1v-8/2 | | 4x/3-2=2 | | 8x+3(1-3x)=0 | | 8x+(1-3x)=0 | | 6x^2+6-13=0 | | (e+3)X2=16 | | 9.2(2x+1)=6.8(3x-2) | | 2z—4=6 | | -2-13.8x=-14x-1 | | 2a+38+54-a+5a-32=180 | | -3/5x+2=0 | | 5y^2-33y+52=0 | | 5j^2+12j+4=0 | | 6(x-2)=8(x-9 | | x-6/5-3=-12 | | x+8/9-7=-2 | | 7x=8/6=6 | | 2x+7=16x-4 | | 3x2-8x-11=0 | | 2(2n-1)/5=3(1-2n)/7 | | 4x-4/5=3-6x/7 | | (9+y)(3y-8)=0 | | Y=5-4x2 | | 7(x+1)+3(3-x)=5(x-1)-3(2x+1) | | 7(x+1)+3(3-x)=5(x-1)-3(2x+1 | | 11x-(x+8)=14 |